National Parks & Wildlife Service

Sharavogue Bog SAC (site code 000585)

Conservation objectives supporting document - raised bog habitats

Version 1

October 2015

Contents

1	INTRO	DUCTION	2
	1.1 R	AISED BOGS	2
	1.1.1	Raised Bogs Microtopography	3
	1.1.2	Typical Flora of Irish Raised Bogs	5
	1.1.3	Typical Fauna of Irish Raised Bogs	6
	1.2 H	ABITATS DIRECTIVE RAISED BOG HABITATS IN IRELAND	9
	1.2.1	Restoration of Active Raised Bog in Ireland	10
	1.3 SI	HARAVOGUE BOG SAC	
	1.3.1	Flora of Sharavogue Bog	11
	1.3.2	Fauna of Sharavogue Bog	12
2	CONSE	RVATION OBJECTIVES	12
	2.1 A	REA	12
	2.2 R	ANGE	14
	2.3 S1	TRUCTURE AND FUNCTIONS	14
	2.3.1	High bog area	14
	2.3.2	Hydrological regime: water levels	15
	2.3.3	Hydrological regime: flow patterns	16
	2.3.4	Transitional areas between high bog and surrounding mineral soils (inc	cludes
	cutove	r areas)	16
	2.3.5	Vegetation quality: central ecotope, active flush, soaks	17
	2.3.6	Vegetation quality: microtopographical features	18
	2.3.7	Vegetation quality: bog moss (Sphagnum) species	18
	2.3.8	Typical species: bog flora	19
	2.3.9	Typical species: bog fauna	19
	2.3.10		
	2.3.1		
	2.3.1 2.3.1		
	2.3.11 2.3.11	Negative physical indicators	
	2.3.11	Vegetation composition: native negative indicator species	
	2.3.12	Vegetation composition: non-native invasive species	
	2.3.13	Air quality: nitrogen deposition	
	2.3.14	Water quality	
3	RFFFRF	FNCFS	24

- Map 1: Extent of potential active raised bog on Sharavogue Bog.
- Map 2: Distribution of raised bog ecotopes on Sharavogue Bog.
- Map 3: Digital elevation model and drainage patterns at Sharavogue Bog.

1 Introduction

This document presents a summary of the background information that has informed the process of setting the Site-Specific Conservation Objective in relation to the priority Annex I habitat 'active raised bogs' (habitat code 7110) (hereafter referred to as Active Raised Bog (ARB)), for which Sharavogue Bog Special Area of Conservation (SAC) has been designated.

Sharavogue Bog SAC is also designated for two other related Annex I habitats, namely; 'degraded raised bogs still capable of natural regeneration' (habitat code 7120) (hereafter referred to as Degraded Raised Bog (DRB)) and 'depressions on peat substrates of the Rhynchosporion' (habitat code 7150). Based on the close ecological relationship between these three habitats types, it is not necessary to set specific Conservation Objectives for all three habitats individually. It is considered that should favourable conservation condition for ARB be achieved on the site, then, as a consequence, favourable conservation condition for the other two habitats would also be achieved.

1.1 Raised Bogs

Raised bogs are accumulations of deep peat (typically 3-12m) that originated in shallow lake basins or topographic depressions. The name is derived from the elevated surface, or dome, that develops as raised bogs grow upwards through the accumulation of peat; the domed effect is often exaggerated when the margins of a bog are damaged by turf cutting or drainage, and are drying out. Raised bogs are most abundant in the lowlands of central and mid-west Ireland.

Irish raised bogs are classified into two sub-types (Schouten 1984): 1. Western or intermediate raised bogs, and 2. True midland or eastern raised bogs, based on phytosociological and morphological characteristics. In terms of overall morphology, the main difference between these two raised bog types is that while eastern raised bogs tended to stay more confined to the depressions in which they were formed, western raised bogs tended to grow out beyond their original basin, presumably a result of the higher rainfall levels (Cross 1990). In terms of vegetation differences the most obvious difference between the two bog types is the presence of a number of oceanic plant species on western raised bogs which are absent from the true midland raised bogs. The liverwort species *Pleurozia purpurea*¹ and the moss species *Campylopus atrovirens* grow on western raised bogs but not on eastern raised bogs; similarly, *Carex panicea* is generally more common on the high bog surfaces of western raised bogs (Schouten 1984). All of these plant species are widespread in the low-level Atlantic blanket bogs and their presence in western raised bogs is presumed to be due to the higher rainfall levels and greater rain-derived nutrient fluxes.

Exploitation has been extensive and none of the remaining Irish raised bogs are completely intact (Cross 1990). It is estimated that less than 10% of the original raised bog habitat in Ireland is in a near intact state (uncut), with less than 0.5% continuing to support ARB (DAHG 2014). Excavated face banks, whether active or inactive, are a common feature around the margins. Any areas where part of the bog has been removed are termed cutover bog, with the remaining area referred to as high bog or intact bog. In a natural state, raised bogs are circled by a wetland fringe, known as the lagg zone, which is usually characterised by fen

_

¹ Note on species nomenclature: In the case of plant species, only scientific names are used throughout the main text while common English names are included in tables. In the case of faunal species, common English names are used throughout the text (where known) together with scientific names.

communities. In Ireland, most laggs have been lost through drainage and land reclamation (Fossitt 2000).

The surface of a relatively intact raised bog is typically wet, acid, deficient in plant nutrients, and supports specialised plant communities that are low in overall diversity and comprising species adapted to the biologically harsh conditions. The vegetation is open, treeless and bog mosses or *Sphagnum* species dominate the ground layer. Small-scale mosaics of plant communities are characteristic and reflect the complex microtopography of hummocks and hollows on the bog surface (see Section 1.1.1 below). Raised bogs are driest at the margins and wetness generally increases towards the centre of the peat mass where well-developed pool systems are most likely to occur.

Raised bogs may also contain soaks and flushes (wet 'active' or dry 'inactive') due to the increased supply of nutrients over time through concentrated surface flows, or where there are links with regional groundwater or the underlying mineral substratum. Slight mineral enrichment and / or constant through flow of water provide conditions suitable for a range of species that are not typically associated with other areas of raised bog.

When damaged by peat extraction or drainage, the water table in the peat drops and the bog surface becomes relatively dry; pools are rare or absent, cover of bog mosses is greatly reduced and *Calluna vulgaris* increases in abundance. The drop in water table causes the peat to compress under its own weight causing the bog surface to deform. Greater deformation occurs closest to areas where the water table has dropped. This increases the slope of the bog surface causing rain falling on the ground surface to flow off the bog more quickly. The effect is normally greatest around the margins and in a typical situation surface wetness increases towards the centre of the bog. Trees such as *Betula pubescens* and *Pinus sylvestris* frequently invade the drier cut margins, but may also occur in flushed areas.

In Ireland, the Annex I habitat ARB is currently considered to be in unfavourable bad conservation status principally as a result of marginal turf cutting, more recent semi-industrial peat extraction, and associated drainage effects caused by these activities (NPWS 2008; 2013). The lowering of regional groundwater levels is also known to have had an effect on some sites. Fires associated with turf cutting, dumping, or agricultural activities may also adversely affect the condition of the habitat.

1.1.1 Raised Bogs Microtopography

Raised bogs are typically treeless and are characterised by a distinctive vegetation dominated by bog mosses (*Sphagnum*), sedges, and dwarf shrubs, all of which are adapted to waterlogged, acidic and exposed conditions. Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical surface features of hummocks, hollows, lawns, and pools. The wettest bogs, which have extensive pool systems, have the greatest variety of plant and animal life and support a range of specialist species.

The following terms that describe microtopography are generally accepted in the study of mire ecology (Gore 1983). A schematic diagram showing the typical microtopographical divisions is presented in Figure 1.

Pools

Depressions in the bog surface where the water table remains above the surface level all year around or below surface level for only a very short period of time. They are characterised by the presence of aquatic plant species such as *Sphagnum cuspidatum*, *S. denticulatum*, and *Cladopodiella fluitans*. In more degraded scenarios or where high seasonal water fluctuation occurs, the pools contain open water and/or algae. Tear pools are

found on bogs where internal tensions, due to mass movement of peat, has taken place within the high bog and has caused the development of elongated pools. These are frequently found on western bogs and may be natural or anthropogenic in origin.

Hollows

These are shallow depressions (less than 5cm deep) on the bog surface where surface water collects, or where the water table reaches or lies just above ground level, depending on seasonal conditions. They are often filled with *Sphagnum* species such as *S. papillosum* and *S. cuspidatum*. They take many forms but are often eye shaped. Marginal hollows tend to be elongated as they are focused points for surface water run off. They are often dominated by *Narthecium ossifragum*.

Lawns

These are shallow hollows or flat areas where one species dominates to form a lawn. This is frequently a *Sphagnum* species, such as *Sphagnum* magellanicum, or *S. papillosum* which can completely fill in a hollow to form a small lawn.

Flats

These are more or less flat areas which are intermediate between hollow and hummock communities. They tend to be drier than the above situations.

Hummocks

These are mounds on the bog surface which can range from a few centimetres to more than one metre in height. They are usually composed mainly of *Sphagnum* species, such as *Sphagnum magellanicum*, *S. capillifolium*, *S. austinii* and *S. fuscum* but other bryophyte species such as *Hypnum jutlandicum* and *Leucobryum glaucum* are also important, especially as the hummock grows taller and becomes drier. *Calluna vulgaris* is another important element, as it flourishes where the water table is not at surface level (Kelly & Schouten 2002).

Figure 1 Raised bog microtopographical divisions on the high bog surface (reproduced from Kelly & Schouten 2002).

1.1.2 Typical Flora of Irish Raised Bogs

Raised bogs are characterised by a distinctive vegetation dominated by a variety of mosses (e.g. Sphagnum spp., Hypnum spp., Racomitrium spp.), sedges and grass-like species (e.g. Eriophorum spp., Rhynchospora spp., Narthecium ossifragum, Molinia caerulea and Carex spp.), and dwarf shrubs (e.g. Calluna vulgaris, Erica tetralix, Vaccinium spp. and Empetrum nigrum). In addition to these groups, a number of other species characterise raised bogs including carnivorous plants (e.g. Drosera spp., Utricularia spp.), lichens of both the bog surface and epiphytes on the stems of dwarf shrubs and the occasional trees on bogs (e.g. Cladonia spp., Usnea spp.). Herbaceous plants are not a significant element on raised bogs and include a few commonly occurring species such as Menyanthes trifoliata, Pedicularis sylvatica, and Potentilla erecta (Cross 1990).

Drier areas and hummocks usually support *Calluna vulgaris*, *Eriophorum vaginatum*, *Trichophorum germanicum*, *Erica tetralix*, lichens (*Cladonia* spp.), bog mosses (*Sphagnum capillifolium*, *S. austinii*, *S. fuscum*, *S. papillosum*), and other mosses (*Dicranum scoparium*, *Leucobryum glaucum*). Wet hollow areas and pools are characterised by *Eriophorum angustifolium*, *Rhynchospora alba*, *Narthecium ossifragum*, *Drosera* spp., *Menyanthes trifoliata*, bladderworts (*Utricularia* spp.), and bog mosses (*Sphagnum cuspidatum*, *S. denticulatum and S. magellanicum*).

A list of flora species that are regarded as being typical of ARB habitat in Ireland is presented in Table 1. A number of these typical species would have a restricted distribution and do not occur throughout the range of the habitat in Ireland (see above), therefore only a subset of these species would be expected to be present on any individual bog.

Table 1 Flora species typically associated with active raised bog in Ireland (after NPWS 2013). Species list is based on vegetation communities defined by Kelly (1993) and Kelly & Schouten (2002).

Common name	Scientific Name
Bog rosemary	Andromeda polifolia
Bog bead moss	Aulacomnium palustre
Bristly Swan-neck moss*	Campylopus atrovirens*
Lichen	Cladonia ciliata
Lichen	Cladonia portentosa
Long leaved sundew	Drosera anglica
Intermediate leaved sundew*	Drosera intermedia*
Round leaved sundew	Drosera rotundifolia
Common cotton grass	Eriophorum angustifolium
Hare's tail cotton grass	Eriophorum vaginatum
Large white moss	Leucobryum glaucum
Bogbean	Menyanthes trifoliata
Bog asphodel	Narthecium ossifragum
Purple spoonwort*	Pleurozia purpurea*
Woolly fringe moss*	Racomitrium lanuginosum*
White beak-sedge	Rhynchospora alba
Austin's bog moss	Sphagnum austinii
Red bog moss	Sphagnum capillifolium
Feathery bog moss	Sphagnum cuspidatum
Cow-horn bog moss*	Sphagnum denticulatum*
Rusty bog moss	Sphagnum fuscum
Magellanic bog moss	Sphagnum magellanicum
Papillose bog moss	Sphagnum papillosum
Golden bog moss*	Sphagnum pulchrum*
Lustrous bog moss	Sphagnum subnitens
Bladderwort	Utricularia minor
Cranberry	Vaccinium oxycoccos

Notes: * Species more typical of western raised bog sites.

1.1.3 Typical Fauna of Irish Raised Bogs

Raised bogs are extremely nutrient poor ecosystems. Acidic, waterlogged and exposed conditions make them an unattractive habitat for animal life. As a consequence they are relatively poor both in terms of species diversity and population densities. Many species are opportunists, vagrant or temporary rather than specialists, but nonetheless may have an important impact on the ecosystem through nutrient imports and exports or other interactions (Cross 1990). A list of fauna species that would be typically associated with raised bog habitat in Ireland is presented in Table 2. The species listed are not confined to ARB and most, if not all, will use other areas of the bog and surrounding habitats.

Raised bog is unsuitable habitat for many vertebrates due to the lack of available foraging and suitable breeding places. The Irish hare is the only mammal commonly occurring. The common frog is the most common vertebrate predator.

Although 18 species of birds have been reported breeding on raised bogs (Wilson 1990) many of these species utilise the bog as a nesting habitat only. They are dependent on other neighbouring habitats such as open water bodies, callows and wet grassland particularly for feeding. Just a few species of bird, including meadow pipit (*Anthus pratensis*), skylark

(Alauda arvensis) and curlew (Numenius arquata) complete their full breeding cycle on the bog and the first two species are the commonest species occurring (Bracken et al. 2008). Red grouse (Lagopus lagopus) must also be included as a typical bog species, occurring year round as a resident. Red grouse and curlew have declined significantly on raised bogs in recent times. BirdWatch Ireland has published an Action Plan for Raised Bog Birds in Ireland which lists 13 species of conservation concern that are associated with Raised Bogs (O'Connell 2011). A recent review of birds of conservation concern in Ireland has since added meadow pipit (Anthus pratensis) to the red (most endangered) list of Birds of Conservation Concern in Ireland (BoCCI) (Colhoun & Cummins 2013).

Our knowledge of the invertebrate assemblages associated with Irish raised bogs remains incomplete (particularly micro-invertebrate species) with few studies undertaken (Reynolds 1984a; Reynolds 1984b; Reynolds 1985; De Leeuw 1986; O Connor *et al.* 2001; Crushell *et al.* 2008; Hannigan & Kelly-Quinn 2011; Wisdom & Bolger 2011; Nolan 2013). Van Duinen (2013) highlights the importance of structural diversity at various spatial scales (e.g. microscale of hummock hollow topography to macro-scale which would include the landscape setting of the bog, see Schouten (2002)) as a prerequisite for hosting the full species diversity of raised bog landscapes.

A recent study of Lepidoptera associated with raised bogs identified two species that appear to be characteristic of higher quality raised bog habitat, namely bordered grey (*Selidosema brunnearia* (Villers, 1789)) and light knot grass (*Acronicta menyanthidis* (Esper, 1789)) (Ciara Flynn pers. comm.).

Recent research on spiders has revealed that a number of species are known to occur in Ireland only on raised bog habitats, all of which are considered local/uncommon or rare across Europe (Myles Nolan pers. comm.). Five of these species that can be considered useful indicators of ARB include: *Glyphesis cottonae* (La Touche 1945), *Walckenaeria alticeps* (Denis 1952), *Satilatlas britteni* (Jackson 1913), *Pirata piscatorius* (Clerck 1757), and *Minicia marginella* (Wider 1834) (Myles Nolan pers. comm.).

The information currently available on other invertebrate groups of peatland systems in Ireland is not sufficient to allow a determination of many species that are typically associated with or may be characteristic of higher quality ARB. Invertebrate species and species groups that are known to be typically associated with raised bogs are included in Table 2.

Table 2 Fauna species typically associated with raised bog ecosystems in Ireland (after O'Connell 1987; Cross 1990; Renou-Wilson *et al.* 2011; Bracken & Smiddy 2012).

Common name	Scientific name
Mammal species	
Irish hare	Lepus timidus hibernicus
Otter	Lutra lutra
Pygmy shrew	Sorex minutes
Fox	Vulpes vulpes
Bird species	
Skylark	Alauda arvensis
Mallard	Anas platyrhynchos
Greenland white-fronted goose	Anser albifrons flavirostris
Meadow pipit	Anthus pratensis
Hen harrier	Circus cyaneus
Cuckoo	Cuculus canorus
Merlin	Falco columbarius
Kestrel	Falco tinnunculus
Snipe	Gallinago gallinago
Red grouse	Lagopus lagopus
Curlew	Numenius arquata
Golden plover	Pluvialis apricaria
Lapwing	Vanellus vanellus
Reptiles and amphibians	
Common lizard	Lacerta vivipara
Common frog	Rana temporaria
Typical invertebrates	
Black slug	Arion ater
Large heath butterfly	Coenonympha tullia
Marsh fritillary butterfly	Euphydryas aurinia
Bog-pool spider	Dolomedes fimbriatus
Water striders	Gerris and Velia species
Oak eggar moth	Lasiocampa quercus
Four-spotted chaser dragonfly	Libellua quadrimaculata
Fox moth	Macrothylacia rubi
Ant	Myrmica ruginodis
Emperor moth	Saturnia pavonia
Great green bog grasshopper	Stethophyma grossa
Other species groups that are well represented on raised bogs include:	Araneae (spiders and mites)
represented on raised bogs include.	Ceratopogonidae (biting-midges)
	Chironomids (non-biting midges)
	Coleoptera (beetles)
	Collembola (springtails)
	Diptera (true flies)
	Dytiscidae (water beetles)
	Hemiptera (true bugs)
	Hymenoptera (bees, wasps, ants and sawflies)
	Lepidoptera (butterflies and moths)
	Odonta (dragonflies and damselflies)
	Orthoptera (grasshoppers)
	Syrphidae (hoverflies)
	Tipulidae (craneflies)
	Tabanidae (horseflies)

1.2 Habitats Directive Raised Bog Habitats in Ireland

Four habitat types listed on Annex I of the EU Habitats Directive are typically associated with raised bogs in Ireland, two of which are priority habitats (*):

- 7110 Active raised bogs (ARB)*
- 7120 Degraded raised bogs still capable of natural regeneration (DRB)
- 7150 Depressions on peat substrates of the *Rhynchosporion*
- 91D0 Bog woodland*

The interpretation manual of EU habitats gives the following description for ARB: "Acid bogs, ombrotrophic, poor in mineral nutrients, sustained mainly by rainwater, with a water level generally higher than the surrounding water table, with perennial vegetation dominated by colourful Sphagna hummocks allowing for the growth of the bog (Erico-Sphagnetalia magellanici, Scheuchzerietalia palustris p., Utricularietalia intermedio-minoris p., Caricetalia fuscae p.). The term "active" must be taken to mean still supporting a significant area of vegetation that is normally peat forming, but bogs where active peat formation is temporarily at a standstill, such as after a fire or during a natural climatic cycle e.g., a period of drought, are also included." (CEC 2007).

DRB should be, according to the interpretation manual capable of regeneration to ARB in 30 years if appropriate measures are put in place (i.e. no major impacting activities are present and any necessary restoration works are implemented).

In Ireland, the identification of ARB is made at ecotope level based on the vegetation classification developed by Kelly (1993) and Kelly & Schouten (2002).

Raised bog vegetation communities are grouped into a series of community complexes and these complexes are then amalgamated into a series of ecotopes characterised by different physical characteristics using the approach outlined by Kelly & Schouten (2002).

The main ecotopes that community complexes are grouped into include:

- Central ecotope
- Sub-central ecotope
- Active flushes and soaks
- Sub-marginal ecotope
- Marginal ecotope
- Inactive flushes
- Face-bank ecotope

Actively accumulating peat conditions occur within the sub-central and central ecotope, which are the wettest on the bog and an indication of good quality ARB. Active flushes and soaks are also dominated by *Sphagnum* mosses and typically have wet conditions. These features are associated with ARB and contribute to the overall diversity of the habitat.

The adjacent surrounding marginal, sub-marginal, and face-bank bog areas typically have a supporting function for the central and sub-central communities but are not peat accumulating. These drier ecotopes may or may not correspond to the Annex I habitat DRB, as it depends on whether they are capable of regeneration to ARB. Other drier ecotopes recorded on the high bog that do not correspond to ARB include 'inactive flushes' which typically have a low *Sphagnum* cover.

The Annex I habitat Rhynchosporion depressions (7150) typically occurs along pool edges and on flats underlain by deep, wet and quaking peat. Typical plant species include Rhynchospora alba, Drosera anglica, Narthecium ossifragum, Sphagnum cuspidatum, S. denticulatum, S. magellanicum, S. papillosum, Menyanthes trifoliata, and Eriophorum angustifolium.

The priority Annex I habitat bog woodland is also actively peat-forming and overlaps with the ARB habitat. Such woodlands are usually dominated by *Betula pubescens* with a characteristic ground cover dominated by *Sphagnum* moss species, which often form deep carpets, and other mosses including species of *Polytrichum*. Woodland areas are occasionally found on raised bogs that have an absence of the characteristic moss layer and are not regarded as peat forming. Such areas do not correspond to the Annex I habitat.

1.2.1 Restoration of Active Raised Bog in Ireland

As already mentioned in the section 1.1, ARB is currently considered to be in unfavourable bad conservation status in Ireland. In addition, according to its definition, DRB should be capable of regeneration to ARB in a 30-year timescale. Thus, it follows that restoration measures are required in order to halt further losses and increase the area of ARB as well as to improve the condition of existing areas of the Annex I habitat.

Most of the restoration works undertaken so far in Ireland have concentrated on the high bog (e.g. Clara Bog, Mongan Bog, Sharavogue Bog and Raheenmore Bog) to prevent further losses as well as to restore areas to ARB. Nevertheless, some restoration works have also been undertaken on cutover areas such as at Ballykenny and Fisherstown Bogs and Killyconny Bog. Such work aims to do one or more of the following (depending on the bog in question): restore ARB on the high bog; reduce further ARB and DRB loss on the high bog; restore peat forming habitats (such as ARB, bog woodland, poor fen) on the cutover.

Works undertaken by the NPWS have indicated that there are significant differences, both ecological and economic, when comparing the effectiveness of works carried out on the cutover with those carried out on the high bog. Positive and significant results (i.e. expansion or development of ARB) can be achieved over a relatively short timeframe (10 years) on favourable areas of the high bog by blocking high bog drains. In contrast, a longer time period (30 years+) is required to achieve active peat formation on cutover areas, and even then the results are generally confined to smaller areas; i.e. flat areas (≤0.3% surface slope) or enclosed depressions that have sufficient water flow (minimum catchment 0.5ha) to maintain wet conditions throughout the year. A longer time period (minimum 50-100 years) is likely to be required for high quality ARB habitat (vegetation structure and species diversity) to develop on such cutover areas. In addition, costs of restoration measures on cutover areas are typically significantly higher than those on high bog areas.

1.3 Sharavoque Bog SAC

The SAC includes the raised bog, known as Sharavogue Bog and surrounding areas which include cutover bog, wet grassland, semi-natural woodland, and an area of wet lagg vegetation in the cutover along the eastern margin of the bog.

The SAC has been selected for the following Annex I habitats:

- [7110] Active raised bogs*
- [7120] Degraded raised bogs still capable of natural regeneration
- [7150] Depressions on peat substrates of the Rhynchosporion

Sharavogue Bog is located about 8km south of Birr, Co. Offaly, in the Little Brosna Valley. It is situated between the River Little Brosna and an elevated ridge of Carboniferous limestone.

The eastern edge is bounded by a disused railway embankment, and the western edge by the river. The bog is underlain by low permeability limestone and limestone till.

Sharavogue Bog is one of the few remaining raised bogs in Ireland situated on a floodplain. It has a well-developed dome of uncut peat which is long and narrow. There is only a relatively small area of ARB confined to the more central part of the dome.

Whilst the surface is generally quite dry, there are some small pools and lawns where Rhynchosporion vegetation is well represented.

Towards the margins of the bog dome, areas are often dominated by one or two species, including *Calluna vulgaris*, *Narthecium ossifragum*, *Eriophorum angustifolium*, and *Trichophorum germanicum*. The *Sphagnum* cover in degraded areas is generally low, with a cover of between 10 and 30% being typical.

Within the cutover zone along the eastern margins of the bog there is up-welling of baserich water and these areas now support carr woodland and calcareous fen vegetation. Areas of wet lagg vegetation such as this are very rare in the country and the lagg system at Sharavogue is one of the best-developed. On the western side the high bog grades through fringing woodland, to alluvial wet grassland by the Little Brosna River.

The structure of much of this raised bog is poor as a result of long-term drying out caused by peat cutting. In addition, drains were inserted in about 60% of the high bog dome in the early 1990s though these were subsequently dammed. The bog surface has also been damaged by burning.

1.3.1 Flora of Sharavogue Bog

The vegetation of the ARB is dominated by *Rhynchospora alba*, short *Calluna vulgaris*, and *Narthecium ossifragum* in disturbed bog. Taller *Calluna vulgaris* and *Eriophorum vaginatum* occur in undisturbed areas. *Trichophorum germanicum* is commonly found on the bog. As a result of drainage and fire damage, the bog is generally quite dry and the cover of *Sphagnum* spp. is low, with the highest percent cover in undisturbed areas. However, hummocks of *Sphagnum capillifolium*, *S. magellanicum*, *S. papillosum*, *S. austinii*, and *S. fuscum* do occur, as well as shallow pools filled with *S. cuspidatum*.

Approximately 70% of the high bog area comprises DRB and supporting habitat, with active areas confined to the more central part of the dome. The *Sphagnum* cover is generally lower here than in the ARB areas. Frequently occurring species include *Calluna vulgaris*, *Erica tetralix*, *Rhynchospora alba*, *Narthecium ossifragum*, *Eriophorum angustifolium*, *Eriophorum vaginatum*, *Trichophorum germanicum*, *Cladonia portentosa*, *Sphagnum capillifolium* and *S. tenellum*. Other less common species include *Andromeda polifolia*, *Vaccinium oxycoccos* and *Drosera rotundifolia*. Young conifers have established in the northern half of the bog, indicating that the area is subject to more severe drying out.

Rhynchosporion habitat is best developed in the extensive wet cutover present along the eastern margin of the high bog area. Extensive rafts of *Sphagnum cuspidatum* support *Rhynchospora alba, Rhynchospora fusca, Eriophorum angustifolium,* and *Drosera anglica*. There are a number of pools on the high bog that also support Rhynchosporion vegetation.

The vegetation of old cutover at the site is of ecological interest, particularly along the eastern margin of the bog, where a spring-fed, species-rich fen is found at the base of a limestone ridge. It is thought that this fen vegetation is a remnant of a much more extensive lagg zone, which once flanked the entire eastern side of the bog (Conaghan 1998). This feature of a base-rich lagg area, in close proximity with the high bog, is unique in the context of Irish raised bogs (Kelly *et al.* 1995). The vegetation of the eastern lagg has recently been

described by Conaghan (2014). The lagg can be divided into two sections, a northern zone and a southern zone. The northern area is principally cutover bog with ombroptrophic influences dominant. The surface is relatively dry in this area with some scrub encroachment (Conaghan 2014). In contrast, the southern zone has a notable minerotrophic influence with areas of *Schoenus nigricans* dominated fen vegetation typical of base rich conditions. The fen areas are associated with pools and occur in a mosaic of woodland, scrub, and cutover bog. Between and amid the fen areas and the railway embankment to the east, is a narrow strip of alder carr. The recent survey of the eastern lagg zone has concluded that the vegetation in this area has not changed significantly during the period 1997-2013 (Conaghan 2014).

1.3.2 Fauna of Sharavogue Bog

The common frog (*Rana temporaria*) is known to occur. Irish hare (*Lepus timidus hibernicus*) is reported as common, with badger (*Meles meles*), fox (*Vulpes vulpes*), otter (*Lutra lutra*), pine marten (*Martes martes*), mink (*Mustela vison*), stoat (*Mustela erminea*) and fallow deer (*Dama dama*) also found in the SAC (NPWS, 2004).

Snipe (*Gallinago gallinago*), pheasant (*Phasianus colchicus*), curlew (*Numenius arquata*), woodcock (*Scolopax rusticola*), meadow pipit (*Anthus pratensis*), skylark (*Alauda arvensis*) and mallard (*Anas platyrhynchos*) have been reported as breeding on the bog.

Other birds that have been known to frequent the SAC include sparrowhawk (*Accipiter nisus*), kestrel (*Falco tinnunculus*), teal (*Anas crecca*), long-eared owl (*Asio otus*), barn owl (*Tyto alba*) and grey heron (*Ardea cinerea*) (NPWS 2004). The spider fauna of Sharavogue has been subject to recent survey (Myles Nolan pers. comm.), while Moorkens (1998) reported on the mollusc fauna of the SAC.

2 Conservation objectives

A site-specific conservation objective aims to define the favourable conservation condition of a habitat or species at site level. The maintenance of habitats and species within sites at favourable condition will contribute to the maintenance of favourable conservation status of those habitats and species at a national level.

Conservation objectives for habitats are defined using attributes and targets that are based on parameters as set out in the Habitats Directive for defining favourable status, namely area, range, and structure and functions. Attributes and targets may change or become more refined as further information becomes available.

National Conservation Objectives for raised bog SACs have recently been published in the Draft National Raised Bog SAC Management Plan (DAHG 2014). The various attributes and the justification of appropriate targets used to define favourable conservation condition for ARB relevant to Sharavogue Bog SAC are discussed in the following sections.

2.1 Area

NPWS has commissioned a number of raised bog surveys between 1993 and the present - Kelly *et al.* (1995); Derwin & MacGowan (2000); Fernandez *et al.* (2005); Fernandez *et al.* (2006); Fernandez *et al.* (2014). Mapping from these surveys has been used to derive the area of ARB for each bog as shown in Table 3. More recent surveys have been able to employ more precise and detailed mapping techniques and more standardised ecotope descriptions. NPWS undertook a review of data from earlier surveys in 2014 taking into account these improved techniques with the aim of providing more accurate figures for ARB.

This in some cases has resulted in a change in ARB area for these earlier time periods (NPWS, unpublished data).

The national SAC target for the attribute 'habitat area' has been set at 2,590ha (DAHG 2014). This target is based on the estimated area of ARB (1,940ha) and DRB (650ha) present within the SAC network in 1994 (when the Habitats Directive came into effect).

The area of ARB at Sharavogue Bog in 1994 is estimated to have been 23.6ha, while the area of DRB is estimated to have been 17.1ha at that time (see Table 3). Using the same approach that has been adopted in setting the national SAC target, the site-specific target for Sharavogue Bog would equate to 40.7ha (sum of ARB and DRB in 1994). However, in setting the site-specific target the current hydro-ecological conditions on the bog (including cutover) have been considered in order to ensure that the target being set is based on a realistic appraisal of what is achievable as set out below.

The most recent monitoring survey of the bog estimated the area of ARB to be 25.8ha (Fernandez *et al.* 2014a, b). This represents an increase of 2.2ha (10.7%) during the period 1994 - 2011. An additional survey undertaken in 2005 confirms that this increase occurred during the period 1994 - 2005 and is likely to be attributable to positive effects resulting from drain blocking that was undertaken during the 1990s (Fernandez *et al.* 2005).

The current extent of DRB as estimated using a recently developed hydrological modelling technique, based largely on Light Detection and Ranging (LiDAR) ² data, is 29.5ha (see DAHG 2014 for further details of the technique). This represents the area of the high bog, which does not currently contain ARB but has topographical conditions deemed suitable to support ARB (see Map 1 which shows the total area of current and modelled potential ARB). This area was further refined to 14.7ha by estimating the area that could be restored by blocking drains on the high bog. This refinement was based on applying an efficacy factor (see DAHG 2014).

Based on the current assessment of the bog, it is therefore concluded that the maximum achievable target for ARB on the high bog is 40.5ha, which is just 0.2ha less than the estimated area at time of designation. However, it is important to note that this assumes no further decline of ARB due to impacting activities. Similarly, should the bog be significantly dependent on regional groundwater levels then any deepening of drains in the cutover could further impact the potential restoration of ARB on the high bog.

Table 3 Area of ARB and DRB recorded within Sharavogue Bog SAC in 1994, 2005, and 2011 (Source: Fernandez *et al.* 2014a, b).

1994		2005		2011	
ARB (ha)	DRB (ha)	ARB (ha)	DRB (ha)	ARB (ha)	DRB (ha)
23.6	17.1	25.8	Unknown	25.8	14.7

A recent eco-hydrological assessment of the cutover surrounding the high bog undertaken as part of the restoration planning process estimates that, by implementing appropriate management, an additional 0.4ha of ARB could be restored in this area. The long term achievable target for ARB on Sharavogue Bog is therefore set at 40.9ha which is 0.2ha more than the estimated area of ARB and DRB in 1994.

13

² LiDAR is a remote sensing technology that measures vertical surface elevation by illuminating a target with a laser and analysing the reflected light. This provides much more detailed topographical maps than can be collected by traditional surveying techniques.

In conclusion, the site-specific target for the attribute habitat area is: **Restore area of active** raised bog to 40.9ha, subject to natural processes.

2.2 Range

At a national scale, range represents the geographic range that encompasses all significant ecological variations of the ARB habitat. The national SAC target for the attribute 'range' has been set as 'not less than current range subject to natural processes'.

However, range, in the form of habitat distribution, may also be important at the site level, particularly within larger SACs, including those containing a number of individual bogs (i.e. complexes). The attribute therefore under the parameter of range is 'habitat distribution'. At the local level, it is important to conserve the variability and distribution of ARB across a raised bog SAC. This will help to ensure the diversity of the habitat is maintained while lessening the impact of localised damaging activities such as fire.

The conservation of ARB within Sharavogue Bog as set out in Section 2.1 above will contribute to safeguarding the national range of the habitat. The ARB habitat at Sharavogue is sub-central ecotope only. A map showing the most recent distribution of ecotopes throughout Sharavogue Bog is presented in Map 2.

The site-specific target for the attribute habitat distribution is: **Restore the distribution and variability of active raised bog across the SAC.**

2.3 Structure and functions

Structure and functions relates to the physical components of a habitat ("structure") and the ecological processes that drive it ("functions"). For ARB these include attributes such as the hydrological regime, water quality, habitat quality, species occurrence, elements of local distinctiveness, marginal habitats, negative physical indicators, and negative species occurrence. As several of these attributes are inter-connected, they are all included in order to better define habitat quality in a meaningful way. In some cases, attribute targets are not quantified; however, as more detailed information becomes available (for example through further research), more measurable site-specific targets may be developed. Structure and functions attributes are expanded on in the sections below.

2.3.1 High bog area

On individual raised bogs adequate high bog is required to support the development and maintenance of ARB. Raised bog habitat that is classified as neither ARB nor DRB is still important particularly as a supporting habitat for those listed in Annex I of the Habitats Directive. It is an essential part of the hydrological unit which supports the ARB and DRB habitats. High bog is of value in its own right as a refuge for species characteristic of drier bog conditions as well as for providing a transitional zone between the Annex I habitats of the high bog and surrounding areas. Additional values for the maintenance of high bog include the preservation of its record of past environmental conditions and carbon storage. The area of high bog in the entire SAC network in 1994 was 10,740ha. The corresponding area in 2012 is 10,515ha – indicating that there has been a 225ha loss of high bog since 1994.

The national target for the attribute 'high bog' habitat is to ensure no decline in extent of high bog to support the development and maintenance of ARB.

The area of high bog within Sharavogue Bog SAC in 1994 was mapped as 137ha. The corresponding area in 2012 was also 137ha (based on interpretation of LiDAR and aerial photography flown in 2012), indicating no loss of high bog during this period (DAHG 2014).

However, the field survey by Fernandez *et al.* (2005) did report a small loss of 0.2ha in the area of high bog due to turf cutting. The extent of high bog within the SAC in 2012 is illustrated on Map 1.

The site-specific target for the attribute high bog is: No decline in extent of high bog necessary to support the development and maintenance of active raised bog.

2.3.2 Hydrological regime: water levels

Hydrological processes are key drivers of raised bog ecology. The different raised bog communities, assemblages, and species are affected by various hydrological attributes. For ARB, mean water levels need to be near or above the surface of bog lawns for most of the year. Seasonal fluctuations should not exceed 20cm, and water level should be within 10cm of the surface, except for very short periods of time (Kelly & Schouten 2002). Gentle slopes that limit intermittent lateral losses of water (through surface runoff) and encourage sustained waterlogging are the most favourable to achieve these conditions. These conditions may be maintained on steeper slopes in areas of focused flow (flushes).

The traditional view of water flowing across the bog laterally has been recently refined to also consider that water flows vertically through peat into the underlying mineral substrate. Water loss, by this route, depends on the permeability of the material through which the water must flow and the difference in head (water level elevation) in the bog and underlying mineral substrate; larger differences encountered in higher permeability materials will result in greater losses. Although the proportion of water lost in this manner may be small, the sustained loss during prolonged dry periods may be sufficient to impact bog ecotopes. Drains extending into the mineral substrate in marginal areas surrounding the bog can lead to an increased gradient between the head in the peat and the head in the underlying substrate resulting in increased vertical water losses from the bog.

The most recent description of drainage at Sharavogue Bog is presented in Fernandez *et al.* (2014a, b). This reports that 21.9km of high bog drains are considered to be impacting upon raised bog habitats. Drain blocking on the high bog was initially carried out in 1992, but proved to be unsuccessful. More successful drain blocking was carried out between 1994 and 1999. During the latest monitoring report Fernandez *et al.* (2014a, b) reported that most of the drains on the high bog continue to have reduced function. These drains are considered to be having an on-going impact upon high bog habitats and may potentially require further engineered intervention. There are also several drains in the marginal areas surrounding the bog; however, some drains along the south-eastern cutover were partially blocked in 1996/97. An area of lagg vegetation is developing in this area where minerotrophic groundwater up-wells at the base of the ridge to the east of the bog. Cutover drains located to the north-west and north-east remain functional.

Much of the knowledge regarding the hydrological requirements of raised bog communities in Ireland stems from the extensive ecological and hydrological work undertaken on Clara Bog since the early 1990s. The only available hydrological study for Sharavogue Bog is the work carried out by Kelly $et\ al.$ (1995). This study noted that Sharavogue Bog lies in a zone of regional groundwater discharge and that the entire eastern margin of the bog is a zone of naturally up-welling mineralised groundwater with electrical conductivities of the order of 600µs/cm recorded in the area, allowing the development of the intact lagg on the eastern side of the bog.

Arterial drainage has resulted in the level of the Little Brosna River being lowered resulting in a decline in the base level for regional groundwater discharge. This in turn is believed to have led to increased rates of vertical infiltration on the high bog. The persistence of ARB in the southern and central parts of the bog suggests that drainage activities in the Little

Brosna have had limited impact here. By contrast the occurrence of much smaller areas of ARB across the north of the bog, despite comparable topographic conditions suggests that drainage impacts in this area are more significant.

The site-specific target for the attribute hydrological regime – water levels is: **Restore** appropriate water levels throughout the site.

2.3.3 Hydrological regime: flow patterns

As outlined above, ARB depends on water levels being near or above the surface of bog lawns for most of the year. Long and gentle slopes are the most favourable to achieve these conditions. Changes to flow directions due to subsidence of bogs can radically change water regimes and cause drying out of high quality ARB areas and soak systems.

A map illustrating the slopes and drainage patterns on Sharavogue Bog based on a digital elevation model generated from LiDAR imagery flown in 2012 is presented in Map 3.

This map illustrates that Sharavogue Bog displays a domed topography, typical of a raised bog with gradients lowest towards the centre of the bog and increasing towards the margins. This results in flow patterns whereby water will flow radially off the bog surface with no apparent areas of focused flow. However, the absence of ARB in areas that appear to have suitable topographic conditions suggests that this bog has been impacted by changes to groundwater heads. Hydrological modelling suggests more extensive impacts over the northern part, probably arising due to contrasting substrate conditions beneath the bog. Additional drainage resulting in further lowering of river base levels can be expected to have additional impacts, particularly over those areas where ARB has already declined, resulting in further loss of ARB and the expansion of the northern impacted area as a result of increasing infiltration through the uncut peat. Furthermore, the changes to regional groundwater heads arising from lowering regional groundwater levels have the potential not only to impact the high bog, but also the lagg zone on the bog margin. A decline in regional groundwater head would be anticipated to result in reduced minerotrophic nutrient fluxes and spring discharge.

The site-specific target for the attribute hydrological regime – flow patterns is: **Restore**, where possible, appropriate high bog topography, flow directions and slopes.

2.3.4 Transitional areas between high bog and surrounding mineral soils (includes cutover areas)

Transitional zones between raised bogs and surrounding mineral soils are typically cutover bog and drained lagg zones. The maintenance / restoration of these areas will help to maintain hydrological integrity of ARB and DRB and support a diversity of other wetland habitats (e.g. wet woodland, swamp and fen) as well as species that they sustain. In some cases, these areas may assist in reducing further losses of ARB / DRB on the high bog and in time could develop into active peat forming habitats (including ARB - see Section 2.1 above). These transitional zones, once restored, can provide ecosystem services through flood attenuation and water purification to downstream areas and potentially increase the carbon storage / sink function of the bog. The estimated extent of such transitional areas within the SAC network is 3,000ha (DAHG 2014). The national target for these transitional areas is to maintain / restore semi-natural habitats with high water levels around as much of the bog margins as necessary.

The transitional areas at Sharavogue Bog include a range of different habitat types (e.g. wet grassland, scrub, cutover bog, woodland, and lagg fen). The total area of cutover bog is estimated to be circa 74ha. The development of habitats within cutover areas depends on a

number of factors including prevailing land-use, topography, up-welling regional groundwater and drainage.

Cutover bog is found all around the margins of the bog. The most intact margins of the bog include an intact lagg zone of alkaline fen along its eastern boundary and areas of broadleaved semi-natural woodland along the south-east margin and between the bog and the Little Brosna River to the west. The *Schoenus nigricans* dominated lagg communities present along the eastern margin have been described in detail by Conaghan (1998; 2014) and are the subject of on-going research. Conaghan (2014) also describes a small area of *Sphagnum* dominated vegetation from the cutover areas along the east of the bog which corresponds closely with ARB.

In the extreme south and north of the site, areas of old cutover occur which are relatively dry have been subject to past burning. Bog pools, now in-filling with Sphagna, occur at the old peat faces.

Beyond an old railway embankment to the south-east, *Alnus glutinosa* dominated wet woodland occurs. To the west of the bog, a narrow strip of drier woodland with *Salix*, *Betula* and *Quercus robur* grows. Along the Little Brosna River callows, wet grassland dominated by *Agrostis stolonifera* and *Potentilla anserina* is found, while other wet grassland fields occur along the eastern margins (Conaghan 2014). Species-rich calcareous dry grassland grows along the old railway embankment to the east.

The site-specific target for the attribute transitional areas is: **Restore adequate transitional** areas to support / protect active raised bog and the services it provides.

2.3.5 Vegetation quality: central ecotope, active flush, soaks, bog woodland

A diverse good quality microtopography on raised bogs consists of *Sphagnum* dominated pools, hollows, lawns and hummocks, which support the highest diversity of species including hummock indicators: *Sphagnum fuscum* and *S. austinii*; pool indicators: *S. cuspidatum*, *S. denticulatum*, and indicators of lack of burning events e.g. some lichen species (*Cladonia* spp.) (Cross 1990).

The national target for the attribute vegetation quality has been set as "to maintain / restore sufficient high quality bog vegetation (i.e. central ecotope and / or flushes / soaks). At least 50% of ARB habitat should be central ecotope and / or flush / soaks." Bog woodland is also regarded as a desirable variant of ARB as it adds species and structural diversity to the habitat and therefore, where relevant, also contributes to the 50% target at a site level.

A summary description of the vegetation of Sharavogue Bog is presented in Section 1.3.1 above. The vegetation and habitats of the bog have been described in more detail by Kelly *et al.* (1995) and Fernandez *et al.* (2005; 2006; & 2014a, b).

The extent of the different ecotopes that correspond with ARB based on the most recent surveys is presented in Table 4 and on Map 2. During the most recent surveys the entire area of ARB comprised sub-central ecotope. The target for this attribute is 20.5ha of central ecotope (50% of ARB target area (40.9ha)).

Table 4 Extent of ecotopes classified as ARB in 2005 and 2011 (modified from Fernandez *et al.* 2005 & 2014a, b).

Ecotope	2005		20	11
	ha	% of total ARB	ha	% of total ARB
Sub-central ecotope	25.8	100	25.8	100
Total ARB	25.8		25.8	

The site-specific target for the attribute vegetation quality is: **Restore 20.5ha of central ecotope/ active flush/ soaks/ bog woodland as appropriate.**

2.3.6 Vegetation quality: microtopographical features

The characteristic microtopographical features of raised bogs are described in Section 1.1.1 above.

The surface of the ARB habitat on Sharavogue Bog has a uniform topography with abundant hummocks and few pools (Fernandez *et al.* 2014a, b).

The site-specific target for the attribute microtopographical features is: **Restore adequate** cover of high quality microtopographical features.

2.3.7 Vegetation quality: bog moss (Sphagnum) species

Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical microtopographical features as described in Section 1.1.1 above.

The vegetation of a typical raised bog that is still hydrologically intact is characterised by the dominance of several species of Sphagna and dwarf, ericoid shrubs. The most abundant species are *Sphagnum capillifolium*, *S. austinii*, and *S. papillosum* which form hummocks or low ridges. *Sphagnum fuscum* may also form hummocks (Cross 1990). On the flats *Sphagnum magellanicum*, *S. papillosum*, *S. tenellum*, and *S. subnitens* are the key species. *Sphagnum pulchrum* may also be dominant in flats on western raised bogs. In permanently waterlogged hollows *Sphagnum cuspidatum* and *S. denticulatum* (western bogs) occur. *Sphagnum fallax* is common where there is slight flushing (Cross 1990). The most commonly occurring *Sphagnum* moss species that occur on raised bogs in Ireland are presented in Table 5 along with a summary of their ecology and typical contribution to peat formation.

At Sharavogue Bog, the ARB habitat has a total *Sphagnum* cover of circa 51 to 75% mainly of *Sphagnum capillifolium* with *S. papillosum, S. fuscum*, and *S. austinii*. Tear pools with a north-west/south-east orientation contain *Sphagnum cuspidatum*. Further information on the occurrence of *Sphagnum* species throughout Sharavogue Bog is presented by Kelly (1995) and Fernandez *et al.* (2014a, b).

Table 5 *Sphagnum* species typically associated with raised bog ecosystems in Ireland. Ecology as described by Laine *et al.* (2009) with minor modifications.

Species	Ecology	Peat forming
		capacity
Sphagnum austinii	Hummock species	High
Sphagnum capillifolium	Forms small hummocks and carpets	Moderate
Sphagnum cuspidatum	Pool and hollow species	Low
Sphagnum denticulatum	Pool and hollow species	Low
Sphagnum fallax	Occurs in lawns and carpets, shade tolerant.	Low
	Indicative of some nutrient enrichment (soaks and	

Species	Ecology	Peat	forming
		capacity	
	active flushes)		
Sphagnum fuscum	Forms dense low and wide, and occasionally high hummocks	High	
Sphagnum magellanicum	Lawn species forming carpets and low hummocks	Moderate	
Sphagnum palustre	Forms hummocks and dense carpets, often in shaded conditions. Indicative of nutrient enrichment (soaks and active flushes)	Low	
Sphagnum papillosum	Lawn , hollow, and low hummock species	Moderate	
Sphagnum pulchrum	Grows in lawns and hollows, more typical of western bogs	Moderate	
Sphagnum squarrosum	Forms carpets and small mounds. Indicative of nutrient enrichment (soaks and active flushes)	Low	
Sphagnum subnitens	Occurs as individual shoots or small cushions and lawns. Tolerant of minerotrophic conditions	Moderate	
Sphagnum tenellum	Occurs as single shoots or weak cushions, typically in disturbed patches of the bog surface	Low	

The site-specific target for the attribute bog moss (*Sphagnum*) species is: **Restore adequate** cover of bog moss (*Sphagnum*) to ensure peat-forming capacity.

2.3.8 Typical ARB species: flora

Sharavogue Bog supports a large number of plant species typically associated with a True midland raised bog (see Section 1.1.2 above).

The key typical species that are indicative of high quality raised bog include *Sphagnum fuscum* and *S. austinii* which are associated with hummocks and *S. cuspidatum* and *S. denticulatum* which are associated with pools and hollows. All of these species except *Sphagnum denticulatum* have been reported from Sharavogue Bog (Fernandez *et al.* 2014a, b).

The site-specific target for the attribute typical bog flora is: **Restore, where appropriate, typical active raised bog flora.**

2.3.9 Typical ARB species: fauna

As mentioned in section 1.1.3, a list of typical fauna specific to ARB has not been developed and the table contains species that use the wider raised bog habitat. This may be refined as more information becomes available.

Site specific information on the faunal assemblages associated with Sharavogue Bog is currently lacking. It is likely that most species groups referred to in section 1.1.3 occur on the bog.

The site-specific target for the attribute typical bog fauna is: **Restore, where appropriate, typical active raised bog fauna.**

2.3.10 Elements of local distinctiveness

A range of features may be associated with raised bogs which add to the scientific, historical, or conservation value of a bog. These can include geological, topographical, archaeological and hydrological features (e.g. soaks, lakes, flushes) and noteworthy species of flora and fauna (Cross 1990). Notable species of flora and fauna include those listed in the Habitats

and Birds Directives, Red-listed species, and other rare or localised species. For this attribute, features that are particularly associated with ARB are relevant.

2.3.10.1 Site features

The lagg zone and its associated wet woodland is the main feature of local distinctiveness on Sharavogue Bog. Along the eastern margins of the bog there is up-welling of base-rich water and these areas now support carr woodland and calcareous fen vegetation. As previously mentioned, areas of wet lagg vegetation such as this are very rare in the country and the lagg system at Sharavogue is one of the best developed.

The lagg is further described in Section 1.3.1 above.

2.3.10.2 Rare flora

The rare, Red Data Book species *Frangula alnus* and *Eriophorum gracile* have been reported from Sharavogue Bog SAC.

The *Frangula alnus* present amongst a woodland area is thought to be one of the largest national populations and this species is now restricted to probably less than 30 sites in the country.

Eriophorum gracile has been confirmed from the fen area (Conaghan 1998; 2014). This is the first record for the species from Co. Offaly and is only the second recorded site east of the Shannon (Conaghan 1998). The species is restricted to permanently wet areas with stable hydrology (Conaghan 1995). It is of particular interest that the only other record of the species from raised bogs, has been from the lagg area which surrounds Sheheree Bog, Co. Kerry, the only bog in Ireland with a relatively intact lagg zone (Conaghan 1998). The scarce Rhynchospora fusca also occurs at Sharavogue Bog.

Although, not protected, *Epipactis palustris* occurs in wet, base-rich areas along the eastern margin. In common with many fen plants, the species has undergone a serious decline in distribution in the last 50 years, as a result of habitat drainage and reclamation (Conaghan 1998).

2.3.10.3 Rare fauna

As mentioned above, there is a lack of documented site-specific data relating to species that are particularly associated with ARB, including rare species.

In conclusion, the site-specific target for the attribute elements of local distinctiveness is: Maintain features of local distinctiveness, subject to natural processes.

2.3.11 Negative physical indicators

Raised bogs that have been damaged by marginal cutting and drainage, reclamation for agriculture, forestry activities, fire, surface drainage, or the lowering of regional water tables show a range of negative physical indicators (Cross 1990). Such negative physical features of ARB include: bare peat, algae dominated pools and hollows, marginal cracks, tear patterns, subsidence features such as dry peat and / or mineral mounds / ridges emerging or expanding, and burning evidence.

As stated previously, Sharavogue Bog has been damaged due to past extraction of peat and associated drainage. This, along with past burning practices, has resulted in desiccation of the bog and other negative indicators such as erosion channels

Repeated burning may be partly responsible for the vegetation cover seen today (Kelly *et al.* (1995). The dome of this bog is quite steep and on steep slopes the increase in surface water run-off caused by burning of the vegetation, is more significant. Much of the vegetation is dominated by *Rhynchospora alba* and *Narthecium ossifragum*, with large amounts of bare peat and *Campylopus introflexus*. *Calluna vulgaris*, throughout much of the central areas, is very low-growing and *Sphagnum* hummocks are degraded. Kelly *et al.* (1995) also recorded burnt tree stumps on the bog. There is no evidence of recent burning with the last fire event reported as 1994 (Fernandez *et al.* 2014a, b).

As a result of drainage and fire damage, the bog is generally quite dry and the cover of *Sphagnum* spp. is low, with the highest cover occurring in the most undisturbed areas.

The site-specific target for the attribute negative physical indicators is: **Negative physical features absent or insignificant.**

2.3.12 Vegetation composition: native negative indicator species

Indicators of disturbance on a raised bog include species indicative of drying out conditions such as abundant *Narthecium ossifragum* and *Trichophorum germanicum*; *Eriophorum vaginatum* forming tussocks; abundant *Sphagnum magellanicum* in pools previously dominated by species typical of very wet conditions (e.g. *Sphagnum cuspidatum*). Indicators of frequent burning events include abundant *Cladonia floerkeana* and high cover of *Carex panicea* (particularly in the true midlands raised bog type).

At Sharavogue Bog *Pinus sylvestris, Quercus* sp., *Betula pubescens* and *Pteridium aquilinum* are encroaching onto the bog, in particular on its southern side. Small groups of *Pinus sylvestris* and *Betula pubescens* are also found on the high bog. *Phragmites australis* is encroaching along the north-east and *Myrica gale* patches occur near the north-east and north-west edges.

The site-specific target for the attribute native negative indicator species is: **Native negative indicator species at insignificant levels.**

2.3.13 Vegetation composition: non-native invasive species

Non-native invasive species that can commonly occur on raised bog habitats include: *Pinus contorta*, *Rhododendron ponticum*, and *Sarracenia purpurea* (Cross 1990).

Rhododendron ponticum has been recorded in the main drain complex. There are significant areas of bare peat dominated by Campylopus introflexus on the high bog.

The site-specific target for the attribute non-native invasive species: **Non-native invasive** species at insignificant levels and not more than 1% cover.

2.3.14 Air quality: nitrogen deposition

Peatlands are highly sensitive to air pollution, particularly nitrogen deposition. Reactive nitrogen from fossil fuel combustion or intensive agriculture can contaminate rain and snow, causing soil acidification, nutrient enrichment, and a decline in species that are sensitive to these conditions. There is evidence that the combined impact of elevated nitrogen deposition and a warming climate could exceed the sum of the individual stressors and lead to a dramatic decline in the biodiversity of mosses, sensitive vascular plants, and microbes, potentially leading to catastrophic peat loss (PEATBOG project -http://www.sste.mmu.ac.uk).

Air pollution can change both the species composition and the functioning of peatlands. The primary atmospheric pollutant from the Industrial Revolution to the mid 1970s was sulphur

deposition, but levels have since greatly declined. Reactive nitrogen (N) deposition (primarily NO3- and NH4+), which can both acidify and eutrophy, became significantly elevated over a widespread area in the early to mid-20th century and is now the major pollutant in atmospheric deposition across most of Europe (Fowler *et al.* 2005).

Nitrogen is commonly a limiting terrestrial nutrient and in un-impacted peatlands it is tightly cycled. With long-term elevated N deposition, vegetation composition typically shifts toward species adapted to higher nutrient levels, with an overall loss of diversity (Malmer & Wallén 2005). In peatlands, field experiments with N additions within the current European range have shown significant declines in bryophyte species-richness and productivity, and shifts in composition toward vascular plants (Bobbink *et al.* 1998; Bubier *et al.* 2007). Community shifts toward more nitrophilous bryophytes in N-enriched regions such as parts of the Netherlands are also well documented (Greven 1992). In the UK, both a general survey of peatlands across the country (Smart *et al.* 2003), and a targeted study of *Calluna* moorland (Caporn *et al.* 2007) showed significant inverse relationships between levels of nitrogen deposition and species richness, with bryophytes particularly impacted. Changes in the vegetation also impact below-ground communities and biogeochemical processes.

Moderate increases in N deposition from a low level may increase *Sphagnum* and vascular plant productivity without an equal increase in decomposition rates, leading to enhanced carbon accumulation (Turunen, *et al.* 2004). However, shifts in species composition from bryophytes to vascular plants may increase the production of easily-decomposable plant material, leading to higher rates of decomposition, and reduced carbon accumulation (Lamers *et al.* 2000; Bubier *et al.* 2007).

The particular sensitivity of nutrient-poor ombrotrophic peatlands to nitrogen enrichment is reflected in the low critical load threshold of between 5 and 10kg N/ha/yr for these ecosystems (Bobbink & Hettelingh 2011), a level which is exceeded over a significant portion of their range. An Irish study during the late 1990s undertaken by Aherne & Farrell (2000) concluded that total N deposition shows a strong east-west gradient, with lowest deposition in the west at 2kg N/ha/yr and highest in the east and south-east at 20kg N/ha/yr. Average N deposition over the Republic of Ireland was estimated to be approximately 12kg N/ha/yr. The study also concluded that the Critical Load Threshold for N was exceeded in at least 15% of ecosystems studied. The critical load applied to peatland ecosystems by Aherne & Farrell (2000) was 10kg N/ha/yr. This is in line with the recommendation by Bobbink & Hettelingh (2011) that the critical load should be set at the high end of the range in areas of high precipitation and at the low end of the range in areas of low precipitation assuming that Ireland represents a high precipitation area.

It is recommended in the case of Sharavogue Bog that the level of N deposition should not exceed the low end of the range i.e. 5kg N/ha/yr. This recommendation is based on a precautionary approach, as the evidential basis for setting a higher level is not particularly strong as alluded to by Payne (2014). Total N deposition in the vicinity of Sharavogue Bog as reported by Henry & Aherne (2014) is 13.2kg N/ha/yr.

The site-specific target for the attribute air quality is: Air quality surrounding bog close to natural reference conditions. The level of N deposition should not exceed 5kg N/ha/yr.

2.3.15 Water quality

Ombrotrophic peat waters found on the surface of raised bogs are characterised by low pH values (pH < 4.5) (Moore & Bellamy 1974) and also have low values of Electrical Conductivity (EC). This is due to the fact that the raised bog system derives its mineral supply from precipitation, which is usually acidic and low in nutrients. Raised bog vegetation exchanges cations with protons to further reduce the pH.

Hydrochemistry varies in the areas surrounding a raised bog. Locally, conditions may be similar to the high bog due to a dominance of water originating from the bog. However, elsewhere in the marginal areas, there may be increased mineral and nutrient content of the water due to regional groundwater influences, runoff from surrounding mineral soils, and the release of nutrients through oxidation of peat resulting from reduced water levels.

Hydrochemistry is a key factor in maintaining the interest of the lagg zone along the eastern margin of Sharavogue Bog. The entire eastern side (mostly cutover), at the base of the ridge, is a zone of naturally up-welling groundwater. The inner part of the lagg receives peaty water from the bog that may have been in contact with mineral substrates beneath the bog. The outer lagg receives water runoff from the mineral soil beyond the bog. Electrical conductivities in the lagg are relatively high. The plant communities here have relatively high water levels and the springs along the eastern margin are of crucial importance in the maintenance of the high water levels in the lagg area (Conaghan, 1998).

The site-specific target for the attribute water quality is: **Water quality on the high bog and in transitional areas close to natural reference conditions.**

3 References

Aherne, J., & Farrell, E.P. (2000) Final Report: Determination and mapping of critical loads for sulphur and nitrogen and critical levels for ozone in Ireland. Environmental Protection Agency, Dublin, 212pp.

Bobbink, R., Hornung, M. & Roelofs, J.G.M. (1998) The effects of air—borne nitrogen pollutants on species diversity and semi—natural European vegetation. Journal of Ecology 86: 717–738.

Bobbink, R. & Hettelingh, J.P. (2011) Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout, 23-25 June 2010. RIVM report 680359002, Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM).

Bracken, F. & Smiddy, P. (2012) Lowland bogs, fens and reedswamps, pp. 73-89. In: Nairn, R., & O'Halloran, J. (eds.) Bird Habitats in Ireland. The Collins Press, Cork.

Bracken, F., McMahon, B. & Whelan, J. (2008) Breeding bird populations of Irish Peatlands: capsule peatlands are very important habitats for birds despite low species diversity. Bird Study 55 (2): 169-178.

Bubier, J., Moore, T. & Bledzki, L.A. (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology 13: 1168–1186.

Caporn, S.J.M., Edmondson, J., Carroll, J.A., Pilkington, M. & Ray, N. (2007) Long-term impacts of enhanced and reduced nitrogen deposition on semi-natural vegetation. Report to Defra. Terrestrial Umbrella. Work Package 2: Impacts, Recovery and Processes. Task 4. Defra London.

CEC (2007) Interpretation manual of European Union Habitats. Version EUR 27. European Commission, DG Environment, Brussels. Nature and Biodiversity.

Conaghan J.P. (1995) The ecology of *Eriophorum gracile* and *Eriophorum latifolium* in Ireland. Ph.D. thesis, National University of Ireland.

Conaghan J. P. (1998) The vegetation and conservation of lagg zones associated with Sharavogue Bog, Co. Offaly and Clonfinane Bog, Co. Tipperary. Draft report prepared for the National Parks and Wildlife Service, Dublin.

Conaghan J. P. (2014) A resurvey of vegetation associated with a lagg area at Sharavogue Bog, Birr, Co. Offaly. Report prepared for the National Parks and Wildlife Service, Dublin.

Colhoun, K. & Cummins, S. (2013) Birds of Conservation Concern in Ireland 2014–2019. Irish Birds 9: 523-544.

Cross, J. (1990) The Raised Bogs of Ireland, their ecology, status and conservation. Report to the Minister of State at the Department of Finance. The Stationery Office, Dublin.

Crushell, P.H., Schouten, M.G.C., Robroak, B.J.M. & van Duinen, G-J. (2008) The contribution of soak lakes to macroinvertebrate diversity of raised bogs in Ireland. In: Crushell, P.H. (2008). Soak Systems of an Irish Raised Bog: a multidisciplinary study of their origin, ecology, conservation and restoration. PhD thesis, Wageningen University, with a summary in Dutch and Irish.

DAHG (2014) National Raised Bog SAC Management Plan. Draft for Consultation. Main report and appendices. Department of Arts, Heritage and the Gaeltacht.

De Leeuw, J.P.M. (1986) Een onderzoek naar het voorkomen en de verspreiding van aquatische macro- en mirofauna in de Ierse hoogvenen. Deel 1: Macrofauna. Aquatische

Oecologie, Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands.

Derwin, J. & MacGowan, F. (2000) Raised Bog Restoration Project: A Continuation of the Investigation into the Conservation and Restoration of Selected Raised Bog Sites in Ireland. Unpublished report, Dúchas the Heritage Service, Dublin.

Fernandez Valverde, F., Fanning, M., McCorry, M. & Crowley, W. (2005) Raised bog monitoring project 2004-2005. Document 3: Site Reports and Maps Volume 1-5. Unpublished Report. National Parks and Wildlife Service, Dublin.

Fernandez Valverde, F., MacGowan, F., Crowley, W., Farrell, M., Croal, Y., Fanning, M. & McKee, A. (2006) Assessments of impacts of turf cutting on designated raised bogs 2003-2006. A Report to the Research Section of National Parks and Wildlife Service.

Fernandez, F., Connolly, K., Crowley, W., Denyer, J., Duff, K. & Smith, G. (2014a) Raised bog monitoring and assessment survey 2013. Irish Wildlife Manuals, No. 81. National Parks and Wildlife Service, Department of Arts, Heritage and Gaeltacht, Dublin, Ireland.

Fernandez, F., Connolly, K., Crowley, W., Denyer, J., Duff, K. & Smith, G. (2014b) Raised Bog Monitoring and Assessment Survey 2013 - Sharavogue Bog (SAC 000585), Co. Offaly - site report. National Parks and Wildlife Service, Department of Arts, Heritage and Gaeltacht, Dublin, Ireland. Fossitt, J. (2000) A Guide to Habitats in Ireland. The Heritage Council, Ireland.

Fowler, D., Smith, R.I., Muller, J.B.A., Hayman, G. & Vincent, K.J. (2005) Changes in the atmospheric deposition of acidifying compounds in the UK between 1986 and 2001. Environmental Pollution, 137: 15-25.

Gore, A.J.P. (ed.) (1983) Ecosystems of the world 4A. Mires: Swamp, bog, fen and moor. General studies. Elsevir Scientific Publishing Company, Amsterdam.

Greven, H.C. (1992) Changes in the moss flora of the Netherlands. Biological Conservation 59: 133-137.

Hannigan, E., & Kelly-Quinn, M. (2011) Chapter 2.6 - Aquatic macro-invertebrate diversity. pp. 140-157 In: Renou-Wilson, F. (ed.) BOGLAND: Sustainable Management of Peatlands in Ireland. Environmental Protection Agency, Wexford.

Henry, J. & Aherne, J. (2014). Nitrogen deposition and exceedance of critical loads for nutrient nitrogen in Irish grasslands. Science of the Total Environment 470–471: 216–223.

Kelly, M.L. (1993) Hydrology, hydrochemistry and vegetation of two raised bogs in county Offaly. PhD thesis, Trinity College Dublin.

Kelly, L., Doak, M. & Dromey, M. (1995) Raised Bog Restoration Project: An Investigation into the Conservation and Restoration of Selected Raised Bog Sites in Ireland. Part 1 Summary Reports. National Parks & Wildlife Service, Department of Environment, Heritage and Local Government, Dublin.

Kelly, L. & Schouten, M.G.C. (2002) Vegetation. In: Schouten, M.G.C. (ed.), Conservation and restoration of raised bogs: geological, hydrological and ecological Studies. Dúchas — The Heritage Service of the Department of the Environment and Local Government, Ireland; Staatsbosbeheer, the Netherlands; Geological Survey of Ireland, Dublin. pp. 110-169.

Laine, J., Harju, P., Timonen, T., Laine, A., Tuittila, E.S, Minkkinen, K. & Vasander, H. (2009) The Intricate beauty of Sphagnum mosses - A Finnish guide to identification. University of Helsinki Department of Forest Ecology Publications, 39: 1–190.

Lamers, L. P. M., Bobbink, R. & Roelofs, J. G. M. (2000) Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6: 583–586.

Malmer, N. & Wallén, B. (2005) Nitrogen and phosphorus in mire plants: variation during 50 years in relation to supply rate and vegetation type. Oikos, 109: 539–554.

Moore, P.D. & Bellamy, D.J. (1974) Peatlands. Elek Science. London.

Moorkens, E.A. (1998) An inventory of Mollusca in potential SAC sites, with special reference to *Vertigo angustior*, *V. moulinsiana* and *V. geyeri*. Unpublished report to Duchas The Heritage Service, Dublin.

Nolan, M. (2013) Spiders (Araneae) of Irish raised bogs: Clara bog, Co. Offaly and Carrowbehy bog, Co. Roscommon. Bulletin of the Irish Biogeographical Society 37: 172-203.

NPWS (2004). National Parks and Wildlife Service Conservation Plan for Sharavogue Bog 2004-2009. Draft 2. Dept. of Environment, Heritage and Local Government.

NPWS (2008) The Status of EU Protected Habitats and Species in Ireland. National Parks and Wildlife Service, Ireland.

NPWS (2013) The Status of EU Protected Habitats and Species in Ireland. Version 1.0. Unpublished Report, National Parks and Wildlife Services. Department of Arts, Heritage and the Gaeltacht, Dublin, Ireland.

O'Connell C. (ed.) (1987) The IPCC Guide to Irish Peatlands. Irish Peatland Conservation Council, Dublin.

O'Connell, P. (2011) Action Plan for Raised Bog Birds in Ireland 2011-2020. BirdWatch Ireland, Kilcoole, Co Wicklow.

O Connor, Á., Reynolds, J.D. & Kavanagh, B. (2001) Aquatic macroinvertebrate colonisation of artificial water bodies in cutaway oceanic raised bog in Ireland. In: Rochfort, L. and Daigle, J.Y. (eds.), Proceedings of the 11th International Peat Congress. pp. 742-750.

Payne, R.J. (2014) The exposure of British peatlands to nitrogen deposition, 1900–2030. Mires and Peat 14: Art. 4.

Renou-Wilson, F., Bolger, T., Bullock, C., Convery, F., Curry, J., Ward, S., Wilson, D. & Müller, C. (2011) BOGLAND: Sustainable Management of Peatlands in Ireland. STRIVE Report Series No.75. Prepared for the Environmental Protection Agency. pp. 181.

Reynolds, J.D. (1984a) Invertebrate survey of Irish midlands raised bogs. Bulletin of the British Ecological Society 15: 81-82.

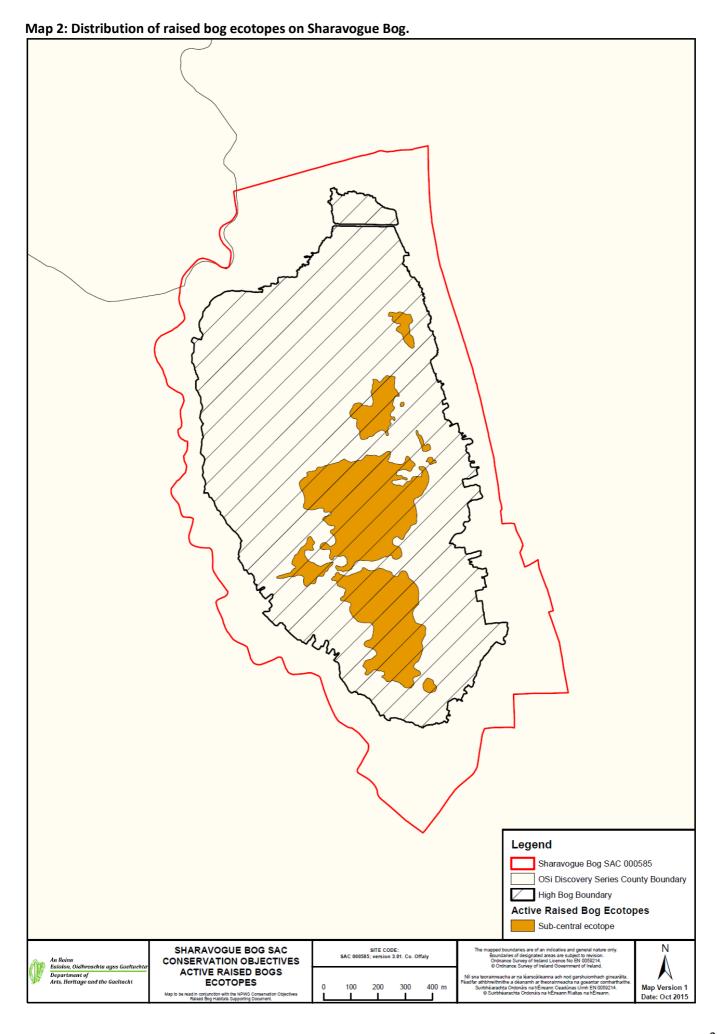
Reynolds, J.D. (1984b) Invertebrate fauna of Irish raised bogs. Part II: Odonata, aquatic Hemiptera and Trichoptera. Bulletin of the Irish Biogeographical Society 8: 98-102.

Reynolds, J.D. (1985) Invertebrates of Lough Roe, Co. Offaly; a rare and endangered bogland habitat. Bulletin of the Irish Biogeographical Society 9: 41-45.

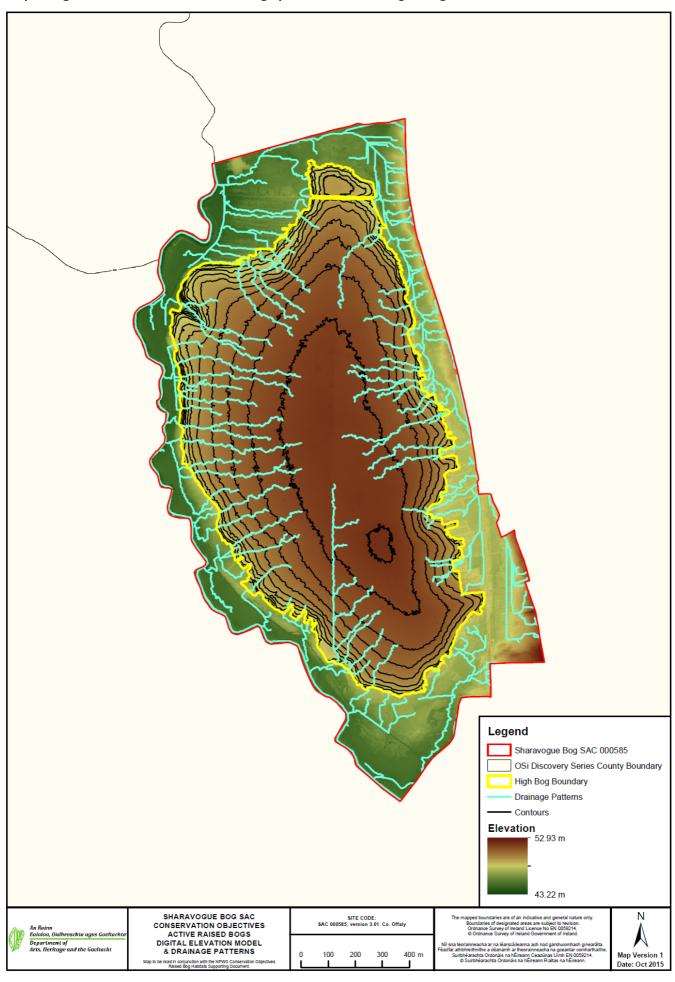
Schouten, M.G.C. (1984) Some aspects of the ecogeographical gradient in the Irish ombrotrophic bogs, paper presented to 7th Int. Peat Congress, Dublin, vol. 1, pp. 414-432, The International Peat Society, Helsinki.

Schouten, M.G.C. (ed.) (2002) Conservation and Restoration of Raised Bogs – geological, hydrological and ecological studies. Dúchas – The Heritage Service of the Department of the Environment and Local Government, Ireland; Staatsbosheheer, The Netherlands; and The Geological Survey of Ireland. pp. 220.

Smart, S.M., Robertson, J., Shield, E.J. & van de Poll, M.H. (2003) Locating eutrophication effects across British vegetation between 1990 and 1998. Global Change Biology 9: 1763-1774.


Turunen, J., Roulet, N.T., Moore, T.R. & Richard, P.J.H. (2004) Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochemical Cycles. 18 (3): GB3002.

Van Duinen G.A. (2013) Rehabilitation of aquatic invertebrate communities in raised bog landscapes. PhD thesis, Radboud University Nijmegen, the Netherlands.


Wilson, H.J. (1990) Birds of raised bogs. pp. 29-36. In: Cross, J. (ed.) The Raised Bogs of Ireland, their ecology, status and conservation. Report to the Minister of State at the Department of Finance. The Stationery Office, Dublin.

Wisdom, R. & Bolger, T. (2011) Chapter 2.4 - Terrestrial invertebrate biodiversity. pp. 103-121 In: Renou-Wilson, F. (ed.) BOGLAND: Sustainable Management of Peatlands in Ireland. Environmental Protection Agency, Wexford.

Map 1: Extent of potential active raised bog on Sharavogue Bog. Legend Sharavogue Bog SAC 000585 High Bog Boundary Potential 7110 *Active Raised Bog OSi Discovery Series County Boundary SHARAVOGUE BOG SAC SITE CODE: SAC 000585; version 3.01. Co. Offaly An Roinn Ealaíon, Oidhreachta agus Gaelta Department of Arts, Heritage and the Gaeltacht **CONSERVATION OBJECTIVES EXTENT OF POTENTIAL** Níl sna teorainneacha ar na léarscáileanna ach nod garshuiomhach ginea Féadfar athbhreithnithe a déanamh ar theorainneacha na gceantar comhart Suirthéarachta Ordonáis na hÉireann Ceadúnas Uimh En 2005/214. © Suirbhéarachta Ordonáis na hÉireann Rúlatas na hÉireann. **ACTIVE RAISED BOGS** Map Version 1 Date: Oct 2015 200 300

Map 3: Digital elevation model and drainage patterns at Sharavogue Bog.

